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Abstract
The extracellular matrix (ECM) provides a solid scaffold and signals to cells through ECM receptors. The
cell–matrix interactions are crucial for normal biological processes and when disrupted they may lead to
pathological processes. In particular, the biological importance of ECM–cell membrane–cytoskeleton interactions
in skeletal muscle is accentuated by the number of inherited muscle diseases caused by mutations in proteins
conferring these interactions. In this review we introduce laminins, collagens, dystroglycan, integrins, dystrophin
and sarcoglycans. Mutations in corresponding genes cause various forms of muscular dystrophy. The muscle
disorders are presented as well as advances toward the development of treatment.
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Introduction

The extracellular matrix (ECM) is a dynamic structure
that provides support and anchorage for cells, segre-
gates tissues from one another and initiates signal trans-
duction pathways. The ECM is composed primarily
of glycoproteins, collagens and proteoglycans that are
secreted and assembled locally into an organized net-
work to which cells adhere via cell surface receptors.
An ECM is already present in the mammalian embryo
from the two-cell stage and is a component of the envi-
ronment of all cell types, although the composition of
the ECM and the spatial relationship between cells and
the ECM differ between tissues. The ECM includes the
interstitial matrix and the basement membrane.

The interstitial matrix is present between cells, while
the basement membrane is a thin sheet-like deposi-
tion of ECM that surrounds cells (eg muscle cells) or
underlies cells (eg epithelial cells) [1,2]. The major
components of the basement membranes are laminins,
collagen type IV, nidogens and the heparan sulphate
proteoglycan perlecan. Laminins and collagen type IV
form independent networks that are connected by nido-
gens and perlecan and the basement membrane is asso-
ciated with cells through interactions with cell surface
receptors (eg integrins and dystroglycan). Hence, a
major role of the basement membrane is to provide
a solid scaffold for the cells and to separate them
from the surrounding interstitial matrix. Apart from
providing tissue structure, the basement membrane is
also crucial for survival and differentiation of cells.
Furthermore, it represents an important barrier that

limits bacterial/viral infections or malignant cell infil-
tration into tissues [3]. Consequently, altered base-
ment membranes are responsible for various human
diseases. Particularly, in skeletal muscle, mutations in
genes encoding ECM proteins and their receptors are
accountable for several types of muscular dystrophy
and, in particular, congenital muscular dystrophy [4].

Congenital muscular dystrophy forms a heteroge-
neous group of progressive genetic diseases that are
mostly, but not exclusively, inherited in an auto-
somal recessive manner. The clinical symptoms are
present from birth or during the first months of life
and include neonatal hypotonia, muscle weakness,
delayed motor milestones and joint contractions. Some
forms are also associated with central nervous system
or peripheral nerve defects. The main morphological
features, observed in muscle biopsies, are degenera-
tion–regeneration processes (evidenced by the pres-
ence of fibres with centrally located nuclei) and fibrosis
infiltration within the muscle tissue [5]. Phenotypi-
cal variability is present in this group of diseases
and ranges from severe and lethal forms to milder
types compatible with a normal life span. Depend-
ing on the genetic defect, it is possible to distin-
guish four forms of congenital muscular dystrophy
linked to ECM or matrix receptor defects; two asso-
ciated with mutations in laminin α2 chain and collagen
VI (congenital muscular dystrophy type 1A and Ull-
rich/Bethlem congenital muscular dystrophy, respec-
tively) and two correlated with defective laminin α2
chain receptors (dystroglycanopathies and integrin α7
deficient congenital myopathy, respectively) [6–16].
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Moreover, putative heterozygous mutations in collagen
IV α1 chain were recently described in patients affected
by muscle–eye–brain disease and Walker–Warburg
syndrome [17]. Previously, these two disorders were
mainly attributed to alterations in glycosylation of
α-dystroglycan [18].

α-Dystroglycan is a member of the dystrophin–
glycoprotein complex (DGC), a large complex of
membrane-associated proteins that is critical for the
integrity of skeletal muscle fibres. The DGC provides
a link between the ECM and the cytoskeleton and is
believed to protect the muscle fibre from contraction-
induced damage [19,20]. The DGC is further com-
posed of β-dystroglycan, dystrophin, the sarcoglycans
(α, β, γ and δ), sarcospan, the syntrophins (α1, β1) and
α-dystrobrevin [21–24]. Notably, mutations in many
of its components cause impaired ECM–cell mem-
brane–cytoskeletal interactions, resulting in severe
skeletal muscle disease. Particularly, human muta-
tions in dystrophin-, sarcoglycan- and dystroglycan-
encoding genes are associated with Duchenne and its
allelic variant Becker muscular dystrophy; limb-girdle
muscular dystrophy types 2C–F and primary dys-
troglycanopathy, respectively [15,25–31]. Duchenne
muscular dystrophy (DMD), which is inherited in an
X-linked recessive pattern, is the most common type of
muscular dystrophy, affecting around 1 in 3500 boys.
Unlike congenital muscular dystrophies that are man-
ifested at birth, patients with DMD have a childhood
onset phenotype, while the age of onset in patients with
limb-girdle muscular dystrophy varies from childhood
to adulthood.

In summary, it is evident that the ECM–cell mem-
brane–cytoskeleton linkage is crucial for maintenance
of skeletal muscle function. In this review, we describe
the structure and functions of laminins, collagens,
laminin receptors and dystroglycan-associated proteins.
We also discuss the molecular pathogenesis of the mus-
cular dystrophies that are caused by primary genetic or
secondary functional defects in these molecules as well
as how these disorders may be therapeutically targeted.

Laminins

Structure and function
Laminins comprise a group of high molecular weight
glycoproteins (400–900 kDa), abundant in the base-
ment membrane [3,32]. Mature laminin proteins are
cross- or T-shaped, composed by one α, one β and one
γ chain that associate to form a heterotrimeric molecule
(Figure 1). Up to now, five α, three β and three γ

chains have been characterized, and they combine to
form at least 15 different laminin isoforms [33,34]. The
laminin heterotrimers are assembled inside the cell,
but extracellular maturation by proteolytic cleavage
may occur in various chains [33]. All laminin chains
share a common domain structure, with a number of
globular and rod-like domains. In most laminins, but

Figure 1. Representative model of a cruciform laminin molecule.
The laminins are composed of three polypeptide chains; α (in pink),
β (in green) and γ (in blue), which interact forming a coiled-coil
domain. The globular domain at the N-terminal of each chain is
involved in network formation. The C-terminal end of the α chain is
composed of five laminin globular domains that bind dystroglycan
and integrins (as well as heparin, sulphatides, perlecan and fibulins).

not all, the short arm is formed by the N-terminal
extremity (LN domain) of α, β and γ chains, fol-
lowed by a variable number of globular domains sepa-
rated by rod-like spacers. The long arm consists of the
three chains joined in a coiled-coil domain and the C-
terminal extremity of the α chain, which is composed
of five homologous globular domains (LG domains
1–5). Laminin polymerization occurs through connec-
tions between the LN domains in each chain and is
dependent on the presence of the laminin receptors
dystroglycan and integrin [35,36]. The laminin LG
domains are engaged in binding dystroglycan and inte-
grin and these interactions are crucial for basement
membrane formation, cell differentiation and cell sur-
vival [37]. Finally, laminins contain binding domains
for other ECM macromolecules. For instance, a single
domain within the laminin γ1 and γ3 chains, respec-
tively, binds nidogens [38–41] and perlecan also binds
laminins [42].

Congenital muscular dystrophy with laminin α2
chain deficiency
In skeletal muscle, the major laminin isoform is com-
posed by α2, β1 and γ1 chains [43], making up
laminin-211 (formerly called merosin). Laminin α2
chain is encoded by the LAMA2 gene and homozy-
gous mutations in this gene are responsible for con-
genital muscular dystrophy type 1A (MDC1A) (MIM
ID #607 855) [14]. It represents approximately 50%
of all congenital muscular dystrophies [44]. This
disorder is characterized by severe muscle weak-
ness, hypotonia, joint contractures, dysmyelinating
peripheral neuropathy and brain defects [45]. Mis-
sense, nonsense, splice-site mutations and deletions
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in the whole LAMA2 gene have been reported [46]
and are summarized in the LAMA2 gene database
(www.dmd.nl/LAMA2_seqvar.html). Depending on
the type of mutation, complete or partial absence of
laminin α2 chain can be observed in skeletal mus-
cle. Except for rare cases, patients displaying complete
laminin-211 deficiency generally appear to develop a
homogenous severe phenotype with an onset of muscle
weakness within the 6 first months of life, incapacity to
acquire independent ambulation, joint contractures and
white matter abnormalities [47–49]. In this group, the
mutations are localized throughout the whole gene, but
four hot-spots (in exons 14, 25, 26 and 27) represent
55% of the mutations [49]. In the group of patients
with partial deficiency, the majority of mutations are
splice-site and frameshift mutations, but missense and
nonsense mutations can also occur [50,51]. They are
associated with a more heterogeneous course of the dis-
ease with either a severe or a milder phenotype [49,52].

How does the absence/reduction of laminin α2 chain
lead to muscle degeneration? This is not fully under-
stood. However, typical features of MDC1A include
disrupted basement membranes [53] and increased
apoptosis [54,55]. Hence, the laminin α2 chain might
mediate survival signals through both integrin α7β1
and dystroglycan [56,57], and it has been proposed that
laminin α2 chain binding to α-dystroglycan strengthens
the cell membrane integrity by anchoring the base-
ment membrane to the sarcolemma [58]. It was also
recently demonstrated that enhanced activity of the
proteasome and the autophagic process, respectively,
is pathogenic in laminin α2 chain-deficient muscle
[59,60]. Still very little is known regarding the laminin
α2 chain-induced signal transduction pathways leading
to increased apoptosis and enhanced protein degrada-
tion. Deciphering such pathways remains essential in
order to further clarify the details of laminin α2 chain
function.

Collagen IV

Structure and function
Collagen IV is also a ubiquitous protein of the base-
ment membrane. Its primary structure is composed of
90% of Gly–Xaa–Yaa repeats, forming a collagenous
domain that allows the assembly of a triple-helix struc-
ture. In particular, the glycine residues are crucial for
the triple-helix formation and many human mutations
affect the glycine residues. Collagen IV also has a short
non-helical N-terminal domain (7S) and a highly con-
served C-terminal globular domain (NC1) (Figure 2).
After synthesis, NC1 domain interactions initiate the
formation of three different trimers, encoded from
six distinct genes (COL4A1–6 ); the α1α1α2 trimer
(which is ubiquitously expressed) and the α3α4α5 and
α5α5α6 trimers (with a more restricted expression
pattern). Unlike fibril-forming collagens, collagen IV
forms a network. In the extracellular space, the type

Figure 2. Schematic diagram of a collagen IV protomer. Collagen
IV is composed of three polypeptide chains (different combinations
of α1–α6 chains). The central collagen domain is flanked by the
N-terminal 7S domain and the C-terminal non-collagenous domain
1 (NC1). Through complex interactions, the heterotrimeric collagen
IV forms a network. Integrin binding sites are located in the NC1
domain and in a domain located 100 nm away from the N-terminal.

IV collagen network is formed by complex interactions
involving the formation of NC1 hexamers, 7S domain
heterotrimers and lateral interactions between the heli-
cal domains [61,62]. Similarly to laminins, the colla-
gen IV network interacts with the cell surface, mainly
through β1 chain-containing integrins and several non-
integrin receptors [63–68]. In addition, there are sev-
eral binding sites for laminin in the collagen IV triple
helix, as well as binding sites for heparan sulphate pro-
teoglycans and nidogens [69,70].

Congenital muscular dystrophy due to collagen
IVα1 mutations
Until recently, no mutation in the six genes encod-
ing the collagen IV chains had been associated with
a muscle disorder. Instead, mutations found in col-
lagen IV-encoding genes have been demonstrated to
be linked to several other diseases, and in particu-
lar kidney disorders [60]. Also, mutations in COL4A1
are coupled to rare genetic diseases. In humans
and mice with mutated COL4A1, a phenotypic vari-
ability is often observed but in general the abnor-
malities include cerebrovascular disease, ocular and
renal defects [71–88]. Interestingly, it has now been
described that the congenital muscular dystrophies
muscle–eye–brain disease and Walker–Warburg syn-
drome could be linked to heterozygous mutations in
the collagenous domain of COL4A1 [17]. Also, het-
erozygous Col4a1 mutant mice display ocular dys-
genesis, neuronal localization defects and myopathy,
all characteristics of muscle–eye–brain disease and
Walker–Warburg syndrome. The molecular mechanism
triggering the disease is apparently independent of α-
dystroglycan glycosylation and instead collagen IV
may not be properly secreted, leading to less depo-
sition of collagen IV in the basement membrane and
hence ruptured basement membranes [17].

Collagen VI

Structure and function
Collagen VI, a beaded filament-forming collagen, is
an abundant interstitial matrix protein that is closely
associated with basement membranes in many organs.
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Figure 3. Schematic description of collagen VI assembly. Inside the
cell, heterotrimeric monomers first assemble into dimers and then
tetramers that are secreted. Extracellularly, the tetramers compile
into long molecular chains (microfibrils).

For example, in skeletal muscle, collagen VI is mainly
produced by the fibroblasts [89] but is involved in
anchoring the basement membrane to the adjacent con-
nective tissue [90,91]. The complex collagen VI net-
work interacts with numerous proteins and has a crucial
role in cell proliferation and survival [92,93]. Collagen
VI is composed by three major polypeptidic chains
(α1, α2 and α3) encoded by three different genes,
COL6A1, COL6A2 and COL6A3, respectively. Also,
three additional genes have been described, encod-
ing α4, α5 and α6 chains with a more restricted
expression pattern [94]. Each chain has an N-terminal
and a C-terminal large globular domain, which are
connected by a central short triple-helical domain
of Gly–Xaa–Yaa amino acid repeat sequences [95].
Before secretion into the extracellular space, the three
chains associate to form a trimer, which further assem-
bles into disulphide-bonded anti-parallel dimers and
then tetramers [96]. After secretion into the extracellu-
lar space, the tetrameric molecules form the microfib-
rillar network by an end-to-end association with
overlapping N-terminal domains, giving rise to a typ-
ical beaded appearance with a periodicity of 105 nm
(Figure 3) [97]. Collagen VI microfibrils interact with
several components of the basement membrane (eg
collagen IV and perlecan) [98,99] and with the cell
surface through β1 chain containing integrins [100].
Interactions with other constituents of ECM, such as
fibronectin [101], biglycan and decorin [102,103], have
also been described.

Ullrich congenital muscular dystrophy and Bethlem
myopathy
Mutations in COL6A1, COL6A2 and COL6A3 genes
are associated with Ullrich congenital muscular dys-
trophy (UCMD, MIM ID No. 254 090) and Bethlem
myopathy (MIM ID No. 158 810) [16]. UCMD repre-
sents the second most frequent form of congenital mus-
cular dystrophy after MDC1A. Initially, UCMD was

believed to be recessively inherited while dominant
mutations were considered to cause Bethlem myopa-
thy. However, an increasing number of heterozygous
and severely affected carriers have been reported. Now
these two entities are considered as two extremes of the
same clinical spectrum. Classical UCMD is character-
ized by a severe generalized early-onset muscle weak-
ness, slowly progressive proximal limb contractures,
distal hyperlaxity, rigid spine and severe respiratory
deficiency [9,11]. UCMD patients have normal IQ and
MRI images show a normal development of the brain.
The patients affected by classical Bethlem myopathy
develop a milder, slowly progressive or static gener-
alized muscle weakness and joints contractures [104].
A high level of heterogeneity regarding the phenotype
and expression levels of collagen VI is observed in
this disease and even within the same family. A grow-
ing number of de novo mutations have been reported,
suggesting that peculiar regions of the genes are sus-
ceptible to neomutations [10,105]. Numerous poly-
morphisms in the COL6A genes could also contribute
to the phenotypic variability. Because of this hetero-
geneity, several studies aimed at delineating geno-
type–phenotype correlations have been carried out.
By analysing collagen VI expression and secretion in
patient fibroblasts and muscle biopsies, a connection
between expression and clinical severity was recently
demonstrated [10–12]. Yet, this correlation was not
demonstrated in other reports [106,107]. Nevertheless,
the use of quantitative RT–PCR was lately proposed
to accelerate the identification of the gene defect, since
reduced transcript levels are associated with all types
of mutations in COL6A genes [10].

By studies of mice with defective collagen VI secre-
tion (and humans with UCMD or Bethlem myopathy)
it has been proposed that the molecular pathogenesis
of collagen VI-deficient muscular dystrophy involves
latent mitochondrial dysfunction accompanied by ultra-
structural alterations of mitochondria and the sarcoplas-
mic reticulum and spontaneous apoptosis of muscle
fibres [10,91]. Moreover, it was recently demon-
strated that the accumulation of abnormal mitochon-
dria and sarcoplasmic reticulum is caused by defective
autophagy [108].However, it remains to be established
how absence of an interstitial matrix protein can lead
to muscle cell apoptosis, and therefore the identifica-
tion of collagen VI muscle cell surface receptors may
be an interesting task.

Dystroglycan

Structure and function
Dystroglycan is a widely expressed member of the
DGC, involved in connecting the ECM with the intra-
cellular cytoskeleton. Dystroglycan is encoded by the
DAG1 gene and undergoes major post-translational
modifications, producing the highly glycosylated extra-
cellular peripheral membrane protein α-dystroglycan
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Figure 4. Schematic diagram of dystroglycan. The dystroglycan
complex is composed of α-dystroglycan, which contains numerous
O-linked oligosaccharides and β-dystroglycan. α-Dystroglycan
binds laminin in the basement membrane and β-dystroglycan
binds to the intracellularly located protein dystrophin.

and the transmembrane protein β-dystroglycan
(Figure 4) [8,109]. Intracellularly, the cytoplasmic
domain of β-dystroglycan links the C-terminal domain
of dystrophin that interacts with the actin cytoskeleton.
Extracellularly, β-dystroglycan binds α-dystroglycan,
which in turn binds to laminin-211 [19], agrin [110]
and perlecan [111] in the muscle basement membrane.
At the synapse, α-dystroglycan also binds neurexin and
pikachurin [112,113]. α-Dystroglycan contains a glob-
ular N-terminal and a C-terminal domain separated by
a central mucin domain [114] rich in serine and thre-
onine amino acids with attached complex O-linked
glycans (eg O-mannosyl glycans). α-Dystroglycan is
glycosylated by several putative and known glycosyl-
transferases and the presence of the oligosaccharides
is crucial for the normal function of α-dystroglycan
as a membrane receptor [7,8]. In particular, the ability
to bind laminins and other ligands requires phospho-
rylation of O-mannosyl glycans, which is mediated
by the glycosyltransferase LARGE [115] that interacts
with the N-terminal domain of α-dystroglycan [116].
Furthermore, following functional glycosylation of α-
dystroglycan, the N-terminal domain is proteolytically
processed by the proprotein convertase furin [116,117].

Dystroglycanopathies

Congenital muscular dystrophies linked to abnormal-
ities in the glycosylation of α-dystroglycan are com-
monly denominated dystroglycanopathies. This group
of diseases could either be due to a primary muta-
tion in the DAG1 gene (primary dystroglycanopathy)
or mainly due to mutations in genes encoding gly-
cosyltransferases involved in the O-mannosyl-linked
glycosylation of α-dystroglycan (secondary dystro-
glycanopathies). Recently, the first primary dystro-
glycanopathy was described. A missense mutation
was discovered in a patient originally diagnosed
with a mild form of limb-girdle muscular dystrophy

with severe cognitive impairment. Interestingly, a
mouse model harbouring the same mutation recapitu-
lated the phenotype and it was further demonstrated
that the missense mutation interferes with LARGE-
mediated glycosylation of α-dystroglycan, resulting in
a lower binding to laminin [15]. Secondary dystrogly-
canopathies represent the prominent cases of dystro-
glycanopathies and are autosomal recessive congenital
muscular dystrophies caused by mutations in protein
O-mannosyltransferase 1 and 2 (POMT1, POMT2 ),
protein O-mannose β1,2-N-acetylglucosaminyltrans-
ferase 1 (POMGnT ), fukutin-related protein (FKRP ),
fukutin and LARGE genes [8,118–125]. The result-
ing diseases are Walker–Warburg syndrome, mus-
cle–eye–brain disease, congenital muscular dystrophy
type 1C, Fukuyama-type congenital muscular dystro-
phy, congenital muscular dystrophy type 1D and limb-
girdle muscular dystrophy type 2I, respectively. The
clinical hallmarks of these disorders at the severe end
of the spectrum include a characteristic combination
of brain malformations, as well as eye defects or high
myopia, but the spectrum extends from patients with
mental retardation with normal brain structure to pre-
sentations of pure muscular dystrophy with normal
cognition.

For all dystroglycanopathies, the common molec-
ular feature involves abnormal glycosylation of α-
dystroglycan, although a strong correlation between
reduced glycosylated α-dystroglycan and clinical
course may not be evident [126]. Hypoglycosylated
α-dystroglycan in skeletal muscle and brain displays
reduced capacity to bind its ECM ligands and con-
sequently basement membrane deposition is defective
[115,127]. However, in order to further understand the
pathogenesis of dystroglycanopathies, it will be impor-
tant to determine the exact glycan composition in nor-
mal and diseased skeletal muscle (as well as in other
tissues) and to further determine the role of glycans in
ligand binding.

Integrins

Structure and function
Integrins are a large family of surface receptors that
also bridge the ECM to the intracellular cytoskele-
ton. Moreover, they are signalling receptors involved
in both outside-in and inside-out signalling. Integrins
consist of two non-covalently-associated subunits, α

and β (Figure 5). Even if not genetically related to
each other, the two subunits share a common structure.
They display a large modular extracellular domain fol-
lowed by a hydrophobic transmembrane α-helix and a
relatively short C-terminal domain that points to the
cytosol. This C-terminal domain lacks actin binding
sites and enzymatic activities and consequently inte-
grin signals are transduced through associated proteins,
such as talin and integrin-linked kinase. At least 24
different receptors could be formed depending on the
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Figure 5. Representative model of an integrin. The α subunit (blue)
consists of a β-propeller (top), a thigh domain, calf-1 and calf-
2 domains, a transmembrane domain and a short cytoplasmic
domain. The β subunit is composed of a βA domain (top), a hybrid
domain, a plexin–semaphorin–integrin domain, four epidermal
growth factor-like repeats, a β-tail domain, a transmembrane
domain and a short cytoplasmic domain. The β-propeller and the
βA domain are engaged in ligand binding.

combination of the 18α and 8β existing subunits
[128,129]. Integrin α7β1 is the main integrin isoform
expressed in striated muscle [130]. Several alterna-
tively spliced isoforms of α7 and β1 chains have been
described and some are differentially expressed dur-
ing muscle development and regeneration [131]. In
skeletal muscle, α7β1 integrin interacts mainly with
laminin-211 but it can also bind other laminin isoforms
[132,133]. Hence, the laminin-211–integrin α7β1 inter-
action creates an additional important link between the
ECM and the cytoskeleton in skeletal muscle [134].
A functional redundancy may exist between integrin
α7β1 and the DGC [135,136] and both integrin α7β1
and dystroglycan contribute to force production in the
muscle fibre. However, only the latter is involved in
anchoring the basement membrane to the sarcolemma
[58].

Congenital muscular dystrophy with integrin α7
deficiency
Integrin α7 chain is encoded by the ITGA7 gene. Muta-
tions in this gene have only been described in three
patients who presented a recessive form of congenital
myopathy characterized by delayed motor milestones
and mental retardation for two of the three patients.
Laminin α2 chain expression was normal in patient
muscle but no integrin α7 subunit was present [13].
The consequences of the mutation at the molecular
level have not been studied, but analyses of a mouse
model that lacks the α7 integrin chain have shown
that this receptor is required to maintain myotendinous
junctions [134]. The β1 integrin accessory molecule
integrin-linked kinase also stabilizes the myotendinous
junctions and protects skeletal muscle from stress-
induced damage [138]. However, apart from integrin-
linked kinase, not much is known concerning the

identity and function of the linker proteins that connect
integrin α7β1 to the actin cytoskeleton. In addition, the
signalling cascades associated with integrin α7β1 in
skeletal muscle remain largely undetermined, although
one study demonstrated that integrin α7 deficiency is
associated with a disruption of the Ras–MAPK sig-
nalling pathway [137]. Finally, α7β1 integrin expres-
sion is impaired in laminin α2 chain-deficient muscle,
suggesting that integrin α7 insufficiency may also con-
tribute to MDC1A pathogenesis [139,140].

Dystrophin

Structure and function
Dystrophin, composed of four distinct domains, is a
427 kDa cytoskeletal protein that is involved in attach-
ing F-actin to the ECM [141] (Figure 6). The N-
terminal extremity contains an actin-binding domain
and is followed by a central rod domain, which also
contains an actin-binding site [142], a cystein-rich
domain and the C-terminal extremity. The rod domain
encompasses 24 spectrin-like repeats that provide flex-
ibility to the molecule. Recently, it was demonstrated
that neuronal NOS (nNOS, a key enzyme involved in
the production of NO) binds directly to two spectrin-
like repeats in dystrophin [143]. A small subregion
(WW domain) composed by 30 amino acids links the
central rod domain to the cystein-rich domain and
provides a binding site for proline residues and bind-
ing to β-dystroglycan occurs within this part of the
molecule [144]. Furthermore, the cystein-rich domain
harbours two EF-hand motifs for intracellular cal-
cium fixation and a calmodulin binding site. Finally,
the C-terminal extremity is composed by two coiled-
coil domains involved in the oligomerization of the
molecule and it also contains binding sites for dystro-
brevins and syntrophins [145–148]. Multiple smaller
isoforms of dystrophin sharing the same C-terminal
extremity are transcribed from several intronic pro-
moters within the dystrophin gene [149]. Furthermore,
utrophin is a 395 kDa dystrophin homologue that is
widely distributed and contains the same four domains
as dystrophin [21,150,151].

Duchenne and Becker muscular dystrophies
DMD (MIM ID No. 310 200) and Becker muscular
dystrophy (BMD, MIM ID No. 300 376) are allelic
disorders caused by mutations in the dystrophin gene
[152]. The phenotypic difference between DMD and
BMD patients can mostly be explained by the type
of mutations and the resulting consequences at the
protein level. Generally, DMD patients exhibit an
absence of dystrophin while BMD patients often har-
bour internally deleted but partially functional dys-
trophin proteins [153–155].

DMD is a severe form of muscular dystrophy with
an onset around 3 years of age. It is characterized
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Figure 6. Representation of dystrophin. Dystrophin is composed
of an N-terminal domain, a long central rod domain containing
spectrin repeats, a cystein-rich domain and finally a C-terminal
domain. F-actin binding sites are located in the N-terminal and in
the rod domain. β-Dystroglycan binds to the cystein-rich domain,
whereas binding sites for syntrophins and α-dystrobrevin are
located in the C-terminal extremity.

by progressive wasting of skeletal muscles, eventually
resulting in cardiac and respiratory failure during
the twenties age range [155]. Patients usually lose
independent ambulation in the second decade of life.
BMD is similar to DMD in the distribution of muscle
wasting and weakness, which is mainly proximal,
but the course is more heterogeneous than in DMD.
The onset of the disease is generally later during
childhood compared to DMD. Some patients have
no symptoms until later in life but others can be
more affected [155–157]. In this group, important
genotype–phenotype correlations have been described
regarding the onset of muscular, cardiac and cognitive
impairment [154].

In DMD patients and in the mdx mouse model of
dystrophin deficiency, loss of dystrophin results in
a major reduction of the entire DGC complex, and
thereby the link between the muscle fibre cytoskele-
ton and the ECM is destabilized and the sarcolemma
becomes fragile. It is hypothesized that the brittle sar-
colemma renders the muscle fibre less resistant to
mechanical stress, which in turn leads to escalating
fibre damage with membrane leakage and altered cal-
cium homeostasis (through membrane tears, due to loss
of sarcolemmal stability and/or disrupted calcium chan-
nels) and subsequent cell death [19,20]. Yet, dystrophin
deficiency may cause pathology by other mechanisms
as well. For example, in the absence of dystrophin,
nNOS is lost from the sarcolemma. As nNOS produces
NO that diffuses to the muscle vasculature and pro-
motes blood vessel dilatation and improves blood flow
into skeletal muscle, dystrophin deficiency has been
associated with muscle ischaemia [158]. Furthermore,
absence of nNOS at the sarcolemma also increases
exercise-associated fatigue [143,159].

Sarcoglycans

Structure and function
Sarcoglycans are single-pass transmembrane glycopro-
teins that belong to the DGC and, through multiple

Figure 7. Simplified diagram of the sarcoglycans. β-, γ- and
δ-sarcoglycan have a C-terminal extracellular domain, but for
α-sarcoglycan it is the N-terminal domain. Brown ovals denote
N-glycosylation moieties.

interactions, serve as anchorage for the peripheral DGC
components. They display a short intracellular tail, and
a large extracellular glycosylated domain rich in cys-
tein residues. This cystein cluster is conserved in all
sarcoglycans and seems to be crucial for the assembly
in a subcomplex (Figure 7) [160]. Six sarcoglycans (α,
β, γ, δ, ε and ζ) have been described and α-, β-, γ- and
δ-sarcoglycan form a tight subcomplex within skele-
tal muscle, while ε-, β-, γ- and δ-sarcoglycan form a
tight subcomplex within smooth muscle [161,162]. ζ-
Sarcoglycan is the most recently identified sarcoglycan
family member and is expressed in both striated and
smooth muscle [163]. The sarcoglycans are cotrans-
lationally translocated in the endoplasmic reticulum
and the assembly into the subcomplex occurs during
the transport from the Golgi to the plasma membrane
[160,161]. At the sarcolemma, the sarcoglycan com-
plex interacts with other DGC members as well as
with other proteins, including γ-filamin. In addition,
the sarcoglycan complex has been shown to cooper-
ate with integrins in mediating cell adhesion, at least
in vitro [164]. Yet, the precise mechanical and/or sig-
nalling functions of the sarcoglycan complex remain to
be elucidated.

Sarcoglycanopathies

Sarcoglycanopathies are a group of autosomal reces-
sive muscular dystrophy caused by mutations in one
of the four sarcoglycan genes [26–30]. Mutations in
the genes encoding α-, β-, γ- and δ-sarcoglycan are
associated with limb-girdle muscular dystrophy type
2D (LGMD2D, MIM ID No. 608 099), 2E (LGMD2E,
MIM ID No. 604 286), 2C (LGMD2C, MIM ID No.
253 700) and 2F (LGMD2F, MIM ID No. 601 287),
respectively. Limb-girdle muscular dystrophy is a
group of progressive muscle disorders predominantly
affecting proximal muscles around the scapular and
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pelvic girdles. The clinical phenotype of sarcogly-
canopathies is very heterogeneous regarding onset, pro-
gression and severity [165]. Generally, patients present
progressive weakness and muscle degeneration, lead-
ing to loss of ambulation, respiratory failure and often
premature death. Due to their simultaneous synthesis,
defects in each sarcoglycan result in a complete desta-
bilization of the entire sarcoglycan complex [160,161].
Furthermore, absence of the sarcoglycan complex at the
sarcolemma leads to diminished α-dystroglycan expres-
sion [166]. Several putative mechanisms underlying the
pathogenesis of sarcoglycan-deficient muscular dystro-
phy have been revealed by studies in animal models.
They include loss of membrane integrity, calcium chan-
nel dysregulation, mitochondrial dysfunction and vas-
cular abnormalities [166–171].

Development of treatment

There is currently no treatment for muscular dys-
trophy. Yet, improved disease management (eg non-
invasive ventilation to improve respiratory function)
has significantly prolonged life for patients with mus-
cular dystrophy. Moreover, corticosteroids have been
demonstrated to improve walking and increase quality
of life for patients with DMD. However, the side-
effects of corticosteroids are quite severe [172]. Thus,
there is an urgent need to develop therapies for mus-
cular dystrophy.

Several of the ECM and ECM-associated pro-
teins discussed in this review were identified decades
ago (eg collagen IV was identified in 1966; laminin
in 1979; dystrophin in 1987; dystroglycan in 1992)
[3,25,61,109]. The structure and function of laminins,
collagens, dystroglycan, integrin, dystrophin and sarco-
glycans have been extensively studied and muta-
tion analyses have been performed by numerous
research laboratories around the world. Moreover,
generation and characterization of animal models of
laminin α2 chain-deficient muscular dystrophy, Ull-
rich congenital muscular dystrophy/Bethlem myopathy,
dystroglycanopathies, integrin α7-deficient muscular
dystrophy, DMD/BMD and sarcoglycanopathies,
respectively, have also significantly contributed to
understanding the pathogenetic mechanisms of these
disorders (Table 1 and references therein). Still, numer-
ous questions as to the molecular and cellular con-
sequences of the protein deficiencies and how they
lead to muscular dystrophy persist. Nevertheless, the
preceding biochemical and molecular work have laid
the foundation for development of molecular therapeu-
tic strategies targeting these incapacitating disorders.
These approaches can be divided into the categories of
gene replacement therapy, cell therapy and mutation-
specific strategies. In Table 1, we present therapies
that have had success in animal models and human
explants and that have been tested in clinical trials.
Considering that the linkage between the ECM and the

cytoskeleton is disrupted in laminin α2 chain-deficient
muscular dystrophy, Ullrich congenital muscular dys-
trophy/Bethlem myopathy, dystroglycanopathy, inte-
grin α7-deficient muscular dystrophy, DMD/BMD and
sarcoglycanopathy, many approaches have been aimed
at restoring this connection. The idea has been to
replace the mutated protein with a functional copy or
smaller versions thereof or to replace the defective pro-
tein with a structurally and functionally similar protein.
Indeed, there are several successful examples of gene
replacement therapy, using transgenic mouse models
as well as virus-mediated gene therapy described in
Table 1. Also, the downstream effects of the perturbed
interactions, such as increased apoptosis, have been
addressed. Indeed, suppression of apoptosis has been
beneficial in mouse models of several forms of mus-
cular dystrophy (Table 1). Finally, a number of other
possibilities aiming at correcting dystrophin mutations
have been explored. Around 15% of DMD patients dis-
play mutations inducing a premature stop codon. In
these cases, stop codon read-through has been forced
by the use of gentamicin and PTC124 in mdx mice fol-
lowed by clinical trials. Nevertheless, it appears that
these drugs still need some improvement before clini-
cal use, in particular since the results of the Phase IIb
clinical trial with PTC124 were not encouraging (par-
ticipants did not show significant increases in the 3 min
walking distance test; Table 1 and references therein).
However, manipulating the dystrophin gene splicing
by antisense oligonucleotides, in order to exclude a
mutated exon and restore the open reading frame and
allowing the production of a partially deleted but func-
tional dystrophin, has been successful and led to Phase
III patient trials (Table 1).

Conclusion

An enormous amount of data on the structure and
function of laminin α2 chain, collagens type IV and
VI, dystroglycan, integrin α7β1, dystrophin and α-
, β-, γ- and δ-sarcoglycans have accumulated since
the discovery of these proteins. In addition, proteo-
glycans that are essential components of the ECM
may be implicated in the development of muscular
dystrophy, as the expression of several proteoglycans
is enriched in fibrotic areas of dystrophic muscles
[173–176]. Also, syndecan cell surface proteoglycans
appear to be essential for skeletal muscle regenera-
tion, a feature that is impaired as muscular dystro-
phy progresses [177]. Finally, a great deal is known
regarding the pathogenetic mechanisms underlying
laminin α2 chain-deficient muscular dystrophy, Ull-
rich congenital muscular dystrophy/Bethlem myopathy,
dystroglycanopathies, integrin α7-deficient muscular
dystrophy, DMD/BMD and sarcoglycanopathies,
respectively. Yet, no cure is available for these diseases,
although vast progress is being made using several
different lines of attack. Therefore, continued studies
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Table 1. Current emerging therapies evaluated in preclinical studies and/or human trials
Mutated protein Emerging therapy Method Species References

Laminin α2 chain Gene over-expression Mini-agrin Mouse model [178–180]
Laminin α1 chain Mouse model [181–183]
Laminin α2 chain Mouse model [184]
Insulin-like growth factor 1 Mouse model [185]
Integrin α7 Mouse model [186]
Galgt2 Mouse model [187]

Apoptosis suppression Over-expression BCL2 Mouse model [188]
Omigapil Mouse model [189]
Doxycycline Mouse model [190]
Cyclophilin D deletion Mouse model [170]

Proteasome inhibition MG-132 Mouse model [59]
Autophagy inhibition 3-Methyladenine Mouse model [60]
Stop codon read-through Laminin α2 chain Patient myotubes [191]
Cell-based therapy Bone marrow transplantation Mouse model [192]

CD90+ cell transplantation Mouse model [193]
Collagen VI Apoptosis suppression Cyclosporine A Mouse/Patient trials [93, 194–196]

Debio 025 Mouse model [197]
Stop codon read-through siRNA against SMG-1 or Upf1 Patient fibroblasts [198]
Autophagy stimulation Gene expression, diet and drugs Mouse model [108]

α-Dystroglycan Gene over-expression LARGE Mouse model [116,199;
Integrin α7 Protein delivery Laminin-111 Mouse model [200]
Dystrophin Gene over-expression Dystrophin (full length/µ/mini) Mouse model [201–204]

AAV dystrophin Mouse/dog/primate/patients [205–212]
Lentivirus dystrophin Mouse/dog/primate model [213–220]
Utrophin Mouse model [221–224]
Sarcospan Mouse model [225]
Integrin α7 Mouse model [226]
Galgt2 Mouse model [227,228]
ADAM12 Mouse model [229,230]
nNOS Mouse model [231,232]
Calpastatin Mouse model [233]
SERCA1 Mouse model [234]

Stop codon read-through Gentamicin Mouse/Patient trials [235–240]
Ataluren (PTC124) Mouse/Patient trials [241,242]

Exon-skipping 2′-O-Methylphosphorothioates Mouse/Patient trials [243–248]
Morpholinos Mouse/Patient trials [249–260]
AAV (U7snRNA or U1) Mouse/dog model [261,262]

Naked DNA delivery Muscle/vein injection Mouse/dog/primate model [263–270]
Electroporation Mouse/dog model [271–273]

Restoration reading frame Meganucleases Mouse model [274]
Utrophin up-regulation Drug induction Mouse model [275–277]
Cell therapy Myogenic/satellite cells Mouse/dog/patient trials [278–287]

Muscle-derived stem cells Mouse model [288,289]
Bone marrow stem cells Mouse model [220,261,290–297]
Side population Mouse model [298,299]
Pericytes Mouse model [300,301]
Mesoangioblasts Mouse/dog model [216,302–303]
Placenta-derived cells Mouse model [304]
iPS cells Mouse model [305]

Myostatin inhibition Antibodies Mouse/patient trials [306,307]
Inhibitors Mouse model [308,309]
Inactivation myostatin receptor Mouse model [310–312]
Myostatin pro-peptide Mouse model [313–315]

Protein delivery Laminin-111 Mouse model [316–318]
Biglycan Mouse model [176]

Akt pathway stimulation Valproic acid Mouse model [319]
Proteasome inhibition Drug targeting Mouse model/patient explants [320–323]
Apoptosis suppression Debio 025 Mouse model [170]
Inflammation and NO HCT 1026 Mouse model [324]
ROS scavenging Tiron/PP2 Mouse model muscle fibers [325]
IGF-1 Systemic delivery Mouse model [326]
L-Arginine Systemic delivery Mouse model [327]
Angiotensin II regulation Losartan Mouse model [328,329]
MMP inhibitors Batimastat Mouse model [330]
TNFα reduction Eicosapentanoic acid Mouse model [331]
NF-κB inhibition Pyrrolidine dithiocarbamate Mouse model [332]
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Table 1. (Continued)
Mutated protein Emerging therapy Method Species References]

α-Sarcoglycan Gene over-expression α-sarcoglycan rAAV/AV vector Mouse/patient trials [333–339]
Galgt2 Mouse model [340]
ε-sarcoglycan Mouse model [341]

Inflammation and NO Ibuprofen and NO co-treatment Mouse model [324,342,343]
Cell therapy Mesoangioblasts Mouse model [344]
Proteasome inhibition Velcade Patient muscle explants [345]
Muscle wasting prevention Myostatin inhibition Mouse model [309,346]

β-Sarcoglycan Gene over-expression β-sarcoglycan rAAV/AV vector Mouse model [339,347]
γ-Sarcoglycan Gene over-expression γ-sarcoglycan rAAV vector Mouse model [348]
δ-Sarcoglycan Gene over-expression δ-sarcoglycan rAAV/AV vector Hamster/mouse model [347,349–352]

SERCA1 Mouse model [353]
Cell therapy Transplantation Hamster/mouse model [354]
Mitochondrial function MPTP protection Mouse model [173]
Apoptosis suppression Cyclophilin D/Debio 025 Mouse model [170]
Membrane integrity Omega-3 fatty acid diet Hamster model [355]

of the ECM–cell membrane–cytoskeleton interactions
in skeletal muscle remain fundamental to in order to
develop treatment for the muscular dystrophies.
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